ارزیابی قابلیت مدل سیستم استنتاجی فازی عصبی(anfis) در تخمین مقادیر بار معلق رسوبی و مقایسه آن با ۲ نوع از مدل های شبکه ی عصبی مصنوعی مطالعه موردی: رودخانه زرینه رود، حوضه جنوب شرقی دریاچه ارومیه
نویسندگان
چکیده
حوضه های جنوب شرقی دریاچه ارومیه به علت برخورداری از شرایط هیدرولوژیکی و لیتولوژیکی خواص، از میزان بالای تولید رسوب برخوردارند. با توجه به این نکته در این تحقیق برای تخمین بار معلق رسوبی روزانه از سیستم استنتاجی فازی عصبی([1]anfis) بهره گرفته شده است. به این منظور داده های دبی روزانه و بار معلق رسوبی365 روز سال 1386 و 1387 ایستگاه رسوبی واقع در رودخانه زرینه رود برای تعلیم و آزمودن مدل های شبکه عصبی مصنوعی مورد استفاده قرار گرفته است. در کنار این مدل از مدل های پرسپترون چندلایه([2]mlp)، شبکه عصبی تابع پایه شعاعی([3]rbf)و منحنی سنجه رسوبی ([4]src) نیز بهره گرفته شد. سپس نتایج مدل anfisبا مدل های فوق مقایسه گردید. برای تعیین کارایی مدل ها از فاکتور مجذور میانگین مربعات خطا (rmse)و خطای تبیین (r2)استفاده شده و مشاهده می شود که مدل anfis با برخورداری از خطای تبیین معادل 9087/0 و مجذور میانگین مربعات خطای معادل 224 میلیگرم در لیتر نسبت به سایر مدل ها به نتایج بهتری دست می یابد. کمترین میزان r2 و rmseنیز برای مدل src به ترتیب معادل 8251/0 و 304 برآورد گردید. مقادیر آکائیک نیز برای مدل anfis معادل 1993 محاسبه شد که این امر نشان دهنده ی قابلیت بالای مدل anfis در تخمین بار معلق رسوبی می باشد. [1]-artificial neural fuzzy inference system [2]-multi layer perceptron [3]-radial basis function [4]-sediment rating curve
منابع مشابه
ارزیابی قابلیت مدل سیستم استنتاجی فازی عصبی(ANFIS) در تخمین مقادیر بار معلق رسوبی و مقایسه آن با 2 نوع از مدلهای شبکهی عصبی مصنوعی مطالعه موردی: رودخانه زرینهرود، حوضه جنوبشرقی دریاچه ارومیه
حوضههای جنوب شرقی دریاچه ارومیه به علت برخورداری از شرایط هیدرولوژیکی و لیتولوژیکی خواص، از میزان بالای تولید رسوب برخوردارند. با توجه به این نکته در این تحقیق برای تخمین بار معلق رسوبی روزانه از سیستم استنتاجی فازی عصبی([1]ANFIS) بهره گرفته شده است. به این منظور دادههای دبی روزانه و بار معلق رسوبی365 روز سال 1386 و 1387 ایستگاه رسوبی واقع در رودخانه زرینه رود برای تعلیم و آزمودن مدلهای شبکه...
متن کاملمقایسه روش های شبکه عصبی بیزین و شبکه عصبی مصنوعی در تخمین رسوبات معلق رودخانه ها (مطالعه موردی: سیمینه رود)
زمینه و هدف: شبیه سازی و ارزیابی آورد رسوب رودخانه از جمله مسایل مهم در مدیریت منابع آب می باشد. اندازه گیری مقدار رسوب به روش های متداول عموماً مستلزم صرف وقت و هزینه زیادی بوده و گاهی از دقت کافی نیز برخوردار نمی باشد. روش بررسی: در این پژوهش تخمین رسوب رودخانه سیمینه رود واقع در استان آذربایجان غربی، با استفاده از شبکه عصبی بیـزین مورد بررسی قرار گرفته و نتایج آن با روش های مرسـوم هوشمند هم...
متن کاملاستفاده از مدل تبرید تدریجی عصبی (nde) در تخمین بار معلق رسوبی و مقایسه ی آن با مدل anfis و rbf مطالعه موردی: رودخانه گیوی چای
در این تحقیق، مدل تبرید تدریجی عصبی (nde)با بهره گیری از ترکیب های ورودی مختلف برای تخمین بار معلق رسوبی روزانه به کار گرفته شد. به این منظور در اولین بخش از تحقیق، مدل ndeبا استفاده از داده های دبی روزانه و بار معلق رسوبی روزهای پیشین تعلیم داده شده و برای تخمین بار معلق رسوبی رودخانه گیوی چای مورد استفاده قرار گرفت. در دومین بخش از تحقیق، مدل nde با استفاده از پارامترهای ضریب تبیین (r2) و خطا...
متن کاملاستفاده از مدل تبرید تدریجی عصبی (NDE) در تخمین بار معلق رسوبی و مقایسهی آن با مدل ANFIS و RBF مطالعه موردی: رودخانه گیویچای
در این تحقیق، مدل تبرید تدریجی عصبی (NDE)با بهرهگیری از ترکیبهای ورودی مختلف برای تخمین بار معلق رسوبی روزانه به کار گرفته شد. به این منظور در اولین بخش از تحقیق، مدل NDEبا استفاده از دادههای دبی روزانه و بار معلق رسوبی روزهای پیشین تعلیم داده شده و برای تخمین بار معلق رسوبی رودخانه گیویچای مورد استفاده قرار گرفت. در دومین بخش از تحقیق، مدل NDE با استفاده از پارامترهای ضریب تبیین (R2) و خطا...
متن کاملمقایسه کارآیی مدل هیدرولوژیکیWetSpa شبکه عصبی مصنوعی و سیستم عصبی- فازی انطباقی ، در شبیه سازی دبی جریان رودخانه (مطالعه موردی: حوضه آبخیز بالوخلوچای استان اردبیل)
پوشش گیاهی حوضههای آبخیز دارد. در سالهای اخیر، مدلهای متنوع کامپیوتری و روشهای هوشمند عصبیجهت تخمین و پیشبینی رواناب و تأثیرات متعدد آن مورداستفاده قرارگرفتهاند. در این تحقیق، عملکرد مدلدر شبیهسازی بارش- رواناب و تخمین دبی روزانه ANFIS و ANN و دو مدل هوشمند WetSpa هیدرولوژیکیحوضه آبخیز بالوخلوچای موردبررسی قرار گرفت. دادههای موردنیاز شامل اطلاعات مربوط به مدل رقومی ارتفاع،نقشههای کاربری اراضی و...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
جغرافیا و توسعهجلد ۱۳، شماره ۴۱، صفحات ۱۸۵-۲۰۰
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023